

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

Asian Journal of Computer Science and Technology (AJCST)
Vol.2.No.1 2014 pp 35-42

available at: www.goniv.com
Paper Received :05-03-2014
Paper Published:28-03-2014

Paper Reviewed by: 1. John Arhter 2. Hendry Goyal
Editor : Prof. P.Muthukumar

35 | P a g e

FAULT SECURE MEMORY DESIGN USING DIFFERENCE-SET CODES
FOR MEMORY APPLICATIONS

Lakshmanan.V, Vijaya Ganesh.J

NPR College of Engineering and Technology
Dindigul.India

ABSTRACT

 Modified decoding algorithms for DS codes are proposed that, in addition to error correction, provide error
detection when the number of correctable bit errors is exceeded by one. This combined error detection and
correction capability of modified decoder are provide to prevent soft errors from causing data corruption, memories
are typically protected with ECCs. Memory applications require low latency encoders and decoders. These codes
allow us to design a fault tolerant error-detector unit that detects any error in the received code vector despite having
faults in the detector circuitry. The fault secure detector unit to check the output vector of the encoder and corrector
circuitry, and if there is any error in the output of either of these units that unit has to redo the operation to generate
the correct output vector. Using this detect and repeat technique, correct potential transient errors in the encoder or
corrector output and provide fault tolerant memory system with fault tolerant supporting circuitry. The need for fault
tolerant systems in terrestrial applications is of growing importance. Unpredictability in the system design,
manufacture and operation is of critical importance to the population that these systems affect. Majority logic
decodable codes are suited for memory applications due to their capability to correct a large number of errors.
However they require a large decoding time that impact memory performance. The fault-detection method
significantly reduces memory access time when there is no error in the data read. The technique uses the majority
logic decoder itself to detect failures, which makes the area over head minimal and keeps the extra power
consumption low.

Index Terms— Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC),
majority logic decoder (MLD), memory, difference-set cyclic codes (DSCCs).

1. INTRODUCTION
 Now a days soft errors are makes a major
problems in memory applications due to scaling and
higher integration densities. These errors not only in
extreme radiation environments like space craft and
avionics but also at normal terrestrial environments.
Especially, SRAM memory failure rates are increasing
significantly, therefore posing a major reliability
concern for many applications. Some commonly used
mitigation techniques are:

• triple modular redundancy (TMR);

• error correction codes (ECCs).

 TMR is a special case of the von Neumann
method [3] consisting of three versions of the design in
parallel, with a majority voter selecting the correct
output. As the method suggests, the complexity
overhead would be three times plus the complexity of
the majority voter and thus increasing the power
consumption. For memories, it turned out that ECC
codes are the best way to mitigate memory soft errors
[2]. For terrestrial radiation environments where there
is a low soft error rate (SER), codes like single error

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

36 | P a g e

correction and double error detection (SEC–DED), are
a good solution, due to their low encoding and
decoding complexity. However, as a consequence of
augmenting integration densities, there is an increase
Hocquenghem (BCH) are not suitable for this task. The
reason for this is that they use more sophisticated
decoding algorithms, like complex algebraic (e.g.,
floating point operations or logarithms) decoders that
can decode in fixed time, and simple graph decoders,
that use iterative algorithms (e.g., belief
propagation).Both are very complex and increase
computational costs [6].
Among the ECC codes that meet the requirements of
higher error correction capability and low decoding
complexity, cyclic block codes have been identified as
good candidates, due to their property of being
majority logic (ML) decodable [7], [8]. A subgroup of
the low-density parity check (LDPC) codes, which
belongs to the family of the ML decodable codes, has
been researched in [9]–[11]. In this paper, we will
focus on one specific type of LDPC codes, namely the
difference-set cyclic codes (DSCCs), which his widely
used in the Japanese tele text system or FM multiplex
broadcasting systems [12]–[14].The main reason for
using ML decoding is that it is very simple to
implement and thus it is very practical and has low
complexity. The drawback of ML decoding is that, for
a coded word of -bits, it takes cycles in the decoding
process, posing a big impact on system performance
[6].One way of coping with this problem is to
implement parallel encoders and decoders. This
solution would enormously increase the complexity
and, therefore, the power consumption.

 As most of the memory reading accesses will
have no errors, the decoder is most of the time working
for no reason. This has motivated the use of a fault
detector module [11] that checks if the codeword
contains an error and then triggers the correction
mechanism accordingly. In this case, only the faulty
code words need correction, and therefore the average
read memory access is speeded up, at the expense of an
increase in hardware cost and power consumption. A
similar proposal has been presented in [15] for the case
of flash memories. The simplest way to implement a
fault detector for an ECC is by calculating the
syndrome, but this generally implies adding another
very complex functional unit.

 This paper explores the idea of using the ML
decoder circuitry as a fault detector so that read
operations are accelerated with almost no additional
hardware cost. The results show that the properties of
DSCC-LDPC enable efficient fault detection. The
remainder of this paper is organized as follows. Section
II gives an overview of existing ML decoding

solutions; Section III presents the novel ML
detector/decoder

Figure. 1. Memory system schematic with MLD.

(MLDD) using difference-set cyclic codes; Section IV
discusses the results obtained for the different versions
in respect to effectiveness, performance, and area and
power consumption. Finally, Section V discusses
conclusions and gives an outlook onto future work.

2. EXISTENT MAJORITY LOGIC
DECODING (MLD) SOLUTIONS
 MLD is based on a number of parity check
equations which are orthogonal to each other, so that,
at each iteration, each code word bit only participates
in one parity check equation, except the very first bit
which contributes to all equations. For this reason, the
majority result of these parity check equations decide
the correctness of the current bit under decoding.

 MLD was first mentioned in [7] for the Reed–
Müller codes. Then, it was extended and generalized in
[8] for all types of systematic linear block codes that
can be totally orthogonalized on each code word bit .A
generic schematic of a memory system is depicted in
Fig. 1 for the usage of an ML decoder. Initially, the
data words are encoded and then stored in the memory.
When the memory is read, the codeword is then fed
through the ML decoder before sent to the output for
further processing. In this decoding process, the data
word is corrected from all bit-flips that it might have
suffered while being stored in the memory. There are
two ways for implementing this type of decoder. The
first one is called the Type-IML decoder, which
determines, upon XOR combinations of the syndrome,
which bits need to be corrected [6]. The second one is
the Type-II ML decoder that calculates directly out of
the codeword bits the information of correctness of the
current bit under decoding [6]. Both are quite similar
but when it comes to implementation, the Type-II uses
less area, as it does not calculate the syndrome as an
intermediate step. Therefore, this paper focuses only on
this one.

A. Plain ML Decoder
 As described before, the ML decoder is a
simple and powerful decoder, capable of correcting
multiple random bit-flips depending on the number of

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

37 | P a g e

parity check equations. It consists of four parts: 1) a
cyclic shift register; 2) an XOR matrix; 3) a majority
gate; and 4) an XOR for correcting the codeword bit
under decoding results of the checksum equations from
the XOR matrix. In the cycle, the result has reached the
final tap, producing the output signal (which is the
decoded version of input).As stated before, input might
correspond to wrong data corrupted by a soft error. To
handle this situation, the decoder would behave as
follows. After the initial step, in which the code word
is loaded, as illustrated in Fig. 2.The input signal is
initially stored into the cyclic shift register rand shifted
through all the taps. The intermediate values in each
tap are then used to calculate the into the cyclic shift
register, the decoding starts by calculating the parity
check equations hardwired in the XOR matrix. The
resulting sums are then forwarded to the majority gate
for evaluating its correctness. If the number of 1’s
received in is greater than the number of 0’s,that would
mean that the current bit under decoding is wrong, and
a signal to correct it would be triggered. Otherwise, the
bit under decoding would be correct and no extra
operations would be needed on it. In the next step, the
content of the registers are rotated and the above
procedure is repeated until all codeword bits have been
processed. Finally, the parity check sums should be
zero if the code word has been correctly decoded.
Further details on how this algorithm works can be
found in [6]. The whole algorithm is depicted in Fig. 3.
The previous algorithm needs as many cycles as the
number of bits in the input signal, which is also the
number of taps, in the decoder. This is a big impact on
the performance of the system, depending on the size
of the code. For example, for a code word of 73 bits,
the decoding would take 73 cycles, which would be
excessive for most applications.

B. Plain MLD With Syndrome Fault Detector (SFD)
 In order to improve the decoder performance,
alternative designs may be used. One possibility is to
add a fault detector by calculating the syndrome, so
that only faulty code words are decoded [11]. Since
most of the code words will be error-free, no further
correction will be needed, and therefore performance
will not be affected. Although the implementation of an
SFD reduces the average latency of the decoding
process, it also adds complexity to the design (see Fig.
4).The SFD is an XOR matrix that calculates the
syndrome based on the parity check matrix. Each parity
bit results in a syndrome equation. Therefore, the
complexity of the syndrome calculator increases with
the size of the code. A faulty code word is detected
when at least one of the syndrome bits is “1.” This
triggers the MLD to start the decoding, as explained
before. On the other hand, if the codeword is error-free,
it is forwarded directly to the output, thus saving the

correction cycles In this way, the performance is
improved in exchange of an additional module in the
memory system: a matrix of XOR gates to resolve the
parity check matrix, where each check bit results into a
syndrome equation. This finally results in a quite
complex module, with a large amount of additional
hardware and power consumption in the system.

3.PROPOSED ML DETECTOR/DECODER
 This section presents a modified version of the
ML decoder that improves the designs presented
before. Starting from the original design of the ML
decoder introduced in [8], the proposed ML
detector/decoder (MLDD) has been implemented using
the difference-set cyclic codes (DSCCs) [16]–[19].
This code is part of the LDPC codes, and, based on
their attributes, they have the following properties
ability to correct large number of errors

Figure. 2.Schematic of an ML decoder.I) cyclic shift

register. II) XOR matrix. III) Majority gate. IV)
XOR for correction.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

38 | P a g e

Figure. 3.Flowchart of the ML algorithm.

Figure. 4.Memory system schematic of an ML
decoder with SFD.

• sparse encoding, decoding and checking circuits
synthesizable into simple hardware;
• modular encoder and decoder blocks that allow an
efficient hardware implementation;
• systematic code structure for clean partition of
information and code bits in the memory.

Figure. 5.Single check equation of a � _ __ ML
decoder. (a) One bit-flip. (b) Two bit-flips. (c) Three

bit-flips.

 An important thing about the DSCC is that its
systematical distribution allows the ML decoder to
perform error detection in a simple way, using parity
check sums (see [6] for more details).However, when
multiple errors accumulate in a single word, this
mechanism may misbehave, as explained in the
following. In the simplest error situation, when there is
a bit-flip in a code word, the corresponding parity
check sum will be “1,” as shown in Fig. 5(a). This
figure shows a bit-flip affecting bit 42 of a codeword
with length and the related check sum that produces a
“1.” However, in the case of Fig. 5(b), the code word is
affected by two bit-flips in bit 42 and bit 25, which
participate in the same parity check equation. So, the
check sum is zero as the parity does not change.
Finally, in Fig. 5(c), there are three bit-flips which
again are detected by the check sum (with a “1”).As a
conclusion of these examples, any number of odd bit
flip scan be directly detected, producing a “1” in the
corresponding .The problem is in those cases with an
even numbers of bit-flips, where the parity check
equation would not detect the error. In this situation,
the use of a simple error detector based on parity check
sums does not seem feasible, since it cannot handle
“false negatives” (wrong data that is not detected).
However, the alternative would be to derive all data to
the decoding process(i.e., to decode every single word
that is read in order to check its correctness), as
explained in previous sections, with a large
performance overhead .Since performance is important
for most applications, we have chosen an intermediate
solution, which provides a good reliability with a small
delay penalty for scenarios where up to five bit-flips
may be expected (the impact of situations with more
than five bit-flips will be analyzed in Section IV-A).
This proposal is one of the main contributions of this
paper, and it is based on the following hypothesis:
Given a word read from a memory protected with
DSCC codes, and affected by up to five bit-flips, all
errors can be detected in only three decoding cycles.
This is a huge improvement over the simpler case,
where decoding cycles are needed to guarantee that
errors are detected. The proof of this hypothesis is very
complex from the mathematical point of view.
Therefore, two alternatives have been used in order to
prove it, which are given here.

• Through simulation, in which exhaustive experiments
have been conducted, to effectively verify that the
hypothesis applies (see Section IV).
• Through a simplified mathematical proof for the
particular case of two bit-flips affecting a single word
For simplicity, and since it is convenient to first
describe the chosen design, let us assume that the
hypothesis is true and that only three cycles are needed

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

39 | P a g e

to detect all errors affecting up to five bits (this will be
confirmed in Section IV).In general, the decoding
algorithm is still the same as the one in the plain ML
decoder version.

 The difference is that, instead of decoding all
codeword bits by processing the ML decoding during
cycles, the proposed method stops intermediately in the
third cycle, as illustrated in Fig. 6. If in the first three
cycles of the decoding process, the evaluation of the
XOR matrix for all is “0,” the code word is determined
to be error-free and forwarded directly to the output. If
the contain in any of the three cycles at least a “1,” the
proposed method would continue the whole decoding
process in order to eliminate the errors. A detailed
schematic of the proposed design is shown in Fig. 7.
The figure shows the basic ML decoder with an -tap
shift register, an XOR array to calculate the orthogonal
parity check sums and a majority gate for deciding if
the current bit under decoding needs to be inverted.
Those components are the same as the ones for the
plain ML decoder shown in Fig. 2. The additional
hardware to perform the error detection is illustrated in
Fig. 7 as i) the control unit which triggers a finish flag
when no errors are detected after the third cycle and ii)
the output.

Figure. 6.Flow diagram of the MLDD algorithm.

 Tristate buffers. The output tri state buffers
are always in high impedance unless the control unit
sends the finish signal so that the current values of the

shift register are forwarded to the output. The control
schematic is illustrated in Fig. 8. The control unit
manages the detection process. It uses a counter that
counts up to three, which distinguishes the first three
iterations of the ML decoding. In these first three
iterations, the control unit evaluates the by combining
them with the OR1 function. This value is fed into a
three-stage shift register, which holds the results of the
last three cycles. In the third cycle, the OR2 gate
evaluates the content of the detection register. When
the result is “0,” the FSM sends out the finish signal
indicating that the processed word is error free. In the
other case, if the result is “1,” the ML decoding process
runs until the end.

 This clearly provides a performance
improvement respect to the traditional method. Most of
the words would only take three cycles (five, if we
consider the other two for input/output) and only those
with errors (which should be a minority) would need to
perform the whole decoding process. More information
about performance details will be provided in the next
sections. The schematic for this memory system is very
similar to the one in Fig. 1, adding the control logic in
the MLDD module.

Figure. 7.Schematic of the proposed MLDD.i)
Control unit. ii) Output tristate buffers.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

40 | P a g e

 WORD ENCODER

 MEMORY
MLDD WORD

Figure. 8.Memory system schematic of an MLDD.

4.CORRECTOR
 One-step majority logic correction is the
procedure that identifies the correct value of an each bit
in the codeword directly from the received codeword
the majority value indicates the correctness of the
code-bit under consideration; if the majority value is 1,
the bit is inverted, otherwise it is kept unchanged.

Figure 9 Majority Logic Corrector for 15-Bit
Codeword’s

 A compact implementation for the majority
gate is by using Sorting Networks. The binary Sorting
Networks is used to do the sort operation of the second
step efficiently. An -input sorting network is the
structure that sorts a set of bits, using 2-bit sorter
building blocks. Fig. 6.5 (a) Shows a 4-input sorting
network. Each of the vertical lines represents one
comparator which compares two bits and assigns the
larger one to the top output and the smaller one to the
bottom see Fig. 6.5 (b) the four-input sorting network,
has five comparator blocks, where each block consists

of two two-input gates; overall the four-input sorting
network consists of ten two-input gates in total.

5. SORTING NETWORK
 Sorting network is used to sort the two or
more inputs. By using the sorting network accessing
time is reduced by sorting the inputs. From the below
diagram each vertical line indicates a comparator,
which compares the two bits and assigns the larger one
to the top output and smaller one to the bottom. From
that we conclude that without using the sorting network
the XOR matrix output is directly applied to the
majority gate so the accessing time is large to obtain
the output. In our proposed we use sorting network in
the modified control unit it separate the maximum level
output and minimum level output So the accessing time
is reduced.

Figure 10 (a) Four-Input Sorting Network Each (b)

One Comparator Structure
(c) Eight-Input Majority Gate Using Sorting

Network

7

7

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

41 | P a g e

6.RESULTS

A. Memory
 The memory read access delay of the plain
MLD is directly dependent on the code size. i.e., a code
with length 72 needs 72 cycles. Then two extra cycles
need to be added for I/O. On the other hand, the
memory read access delay of the proposed Modified
MLDD is only dependent on the word error
rate(WER).there are more errors, then more words
need to be fully decoded.

Figure 11 Error Detection by Plain MLD Method

B. Area
 In the proposed MLDD there is an extra
circuitry of control logic which consists of shift register
and or gates. The given below table shows the
comparison of total estimated power consumption.

Technique

Total Equivalent gate
count requirement

Existent MLD 3197
MLDD 3322
Modified MLDD 2229

 Therefore there will be a slight area overhead
when compared to existing MLD because of this
detection logic. But this is overcome by modified
MLDD using sorting network.

7. CONCLUSION
 In this paper, the detection of errors during
first iterations of serial one step Majority Logic
Decoding of DSCCs-LDPC codes has been presented.
The simulation results show that the one step MLD
would takes 15 cycles to decode a code word of 15-
bits, which would be excessive for most applications.
The MLD design requires small area but requires large
decoding time and can be able to detect two or few
errors.Hence,memory access time increases another

method, called MLDD can detect upto five bit-flips and
consumes the area of majority gate.

 The proposed modified MLDD have the
capability to detect the presence of errors in just 3
cycles even for multiple bit flips.It has found that for
error detection and correction (for code word of 15),
when comparing to the existing technique, a speed up
of about 1100 ns is obtained when there is no errors in
the data read access. This is a great saving of time
since most of the situations the memory read access
does not make errors. Therefore there is a considerable
reduction in the memory access time.The proposed
MLDD have the capability of detecting more than five
bit flips and also reduces the area of majority gate by
the use of sorting network.

REFERENCES
[1] Efficient Majority Logic Fault Detection With

Difference-Set Codes for Memory Applications
Shih-Fu Liu, Pedro Reviriego, Member, IEEE,
and Juan Antonio Maestro, Member, IEEE
Transactions On Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 1, January 2012

[2] P. Ankolekar, S. Rosner, R. Isaac, and J.

Bredow, “Multi-bit error correction methods
for latency-contrained flash memory systems,”
IEEE Trans. Device Mater. Reliabil., vol. 10,
no. 1, pp. 33–39, Mar. 2010.

[3] H. Naeimi and A. DeHon, “Fault secure

encoder and decoder for NanoMemory
applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–
486, Apr. 2009.

[4] S. Ghosh and P. D. Lincoln, “Low-density

parity check codes for error correction in
nanoscale memory,” SRI Comput. Sci. Lab.
Tech. Rep.CSL-0703, 2007.

[5] G. C. Cardarilli et al. Concurrent error

detection in reed-solomon encoders and
decoders. IEEE Trans. VLSI, 15:842–826,
2007.

[6] R. Horan et al. Idempotents, mattson-solomon

polynomials and binary ldpc codes. IEE
Proceedings of Communication, 153(2):256–
262, 2006.

Fault Secure Memory Design Using Difference-Set Codes for Memory Applications

42 | P a g e

[7] C. Tjhai, M. Tomlinson, M. Ambroze, and M.
Ahmed,“Cyclotomic idempotent-based binary
cyclic codes,” Electron. Lett., vol. 41, no. 6,
Mar. 2005.

[8] C. W. Slayman, “Cache and memory error

detection, correction, and reduction techniques
for terrestrial servers and workstations,” IEEE
Trans. Device Mater. Reliabil., vol. 5, no. 3,
pp. 397–404, Sep. 2005.

[9] R. C. Baumann, “Radiation-induced soft errors
in advanced semiconductor technologies,”
IEEE Trans. Device Mater. Reliabil., vol. 5,
no.3, pp. 301–316, Sep. 2005.

[10] Heng Tang et al. Codes on finite geometries.

IEEE Transaction on Information Theory,
51(2):572–596, 2005.

[11] Shu Lin and Daniel J. Costello. Error Control

Coding. Prentice Hall, second edition, 2004.

[12] S. Lin and D. J. Costello, Error Control

Coding, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 2004.

[13] J. Kim et al. Error rate in current-controled

logic processors with shot noise. Fluctuation
and Noise Letters, 4(1):83–86, 2004.

[14] S. Hareland et al. Impact of CMOS process

scaling and SOI on the soft error rates of logic
processes. In Procedings of Symposium on
VLSI Digest of Technology Papers, pages 73–
74, 2001.

