
 
Fault Secure Memory Design Using Difference-Set Codes for Memory Applications 

Asian Journal of Computer Science and Technology (AJCST)  
Vol.2.No.1 2014 pp 35-42 

available at: www.goniv.com 
Paper Received :05-03-2014 
Paper Published:28-03-2014 

Paper Reviewed by: 1. John Arhter  2. Hendry Goyal 
Editor : Prof. P.Muthukumar 

 
 

35 | P a g e  

FAULT SECURE MEMORY DESIGN USING DIFFERENCE-SET CODES 
FOR MEMORY APPLICATIONS 

 
Lakshmanan.V,  Vijaya Ganesh.J 

NPR College of Engineering and Technology 
Dindigul.India 

 
 

 
ABSTRACT 

 
 Modified decoding algorithms for DS codes are proposed that, in addition to error correction, provide error 
detection when the number of correctable bit errors is exceeded by one. This combined error detection and 
correction capability of modified decoder are provide to prevent soft errors from causing data corruption, memories 
are typically protected with ECCs. Memory applications require low latency encoders and decoders. These codes 
allow us to design a fault tolerant error-detector unit that detects any error in the received code vector despite having 
faults in the detector circuitry. The fault secure detector unit to check the output vector of the encoder and corrector 
circuitry, and if there is any error in the output of either of these units that unit has to redo the operation to generate 
the correct output vector. Using this detect and repeat technique, correct potential transient errors in the encoder or 
corrector output and provide fault tolerant memory system with fault tolerant supporting circuitry. The need for fault 
tolerant systems in terrestrial applications is of growing importance. Unpredictability in the system design, 
manufacture and operation is of critical importance to the population that these systems affect. Majority logic 
decodable codes are suited for memory applications due to their capability to correct a large number of errors. 
However they require a large decoding time that impact memory performance. The fault-detection method 
significantly reduces memory access time when there is no error in the data read. The technique uses the majority 
logic decoder itself to detect failures, which makes the area over head minimal and keeps the extra power 
consumption low. 
 
Index Terms— Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC), 
majority logic decoder (MLD), memory, difference-set cyclic codes (DSCCs). 
 
 
 
 
1. INTRODUCTION 
 Now a days soft errors are makes a major 
problems in memory applications due to scaling and 
higher integration densities. These errors not only in 
extreme radiation environments like space craft and 
avionics but also at normal terrestrial environments. 
Especially, SRAM memory failure rates are increasing 
significantly, therefore posing a major reliability 
concern for many applications. Some commonly used 
mitigation techniques are: 
 
• triple modular redundancy (TMR); 

• error correction codes (ECCs). 
 
 TMR is a special case of the von Neumann 
method [3] consisting of three versions of the design in 
parallel, with a majority voter selecting the correct 
output. As the method suggests, the complexity 
overhead would be three times plus the complexity of 
the majority voter and thus increasing the power 
consumption. For memories, it turned out that ECC 
codes are the best way to mitigate memory soft errors 
[2]. For terrestrial radiation environments where there 
is a low soft error rate (SER), codes like single error 
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correction and double error detection (SEC–DED), are 
a good solution, due to their low encoding and 
decoding complexity. However, as a consequence of 
augmenting integration densities, there is an increase 
Hocquenghem (BCH) are not suitable for this task. The 
reason for this is that they use more sophisticated 
decoding algorithms, like complex algebraic (e.g., 
floating point operations or logarithms) decoders that 
can decode in fixed time, and simple graph decoders, 
that use iterative algorithms (e.g., belief 
propagation).Both are very complex and increase 
computational costs [6]. 
Among the ECC codes that meet the requirements of 
higher error correction capability and low decoding 
complexity, cyclic block codes have been identified as 
good candidates, due to their property of being 
majority logic (ML) decodable [7], [8]. A subgroup of 
the low-density parity check (LDPC) codes, which 
belongs to the family of the ML decodable codes, has 
been researched in [9]–[11]. In this paper, we will 
focus on one specific type of LDPC codes, namely the 
difference-set cyclic codes (DSCCs), which his widely 
used in the Japanese tele text system or FM multiplex 
broadcasting systems [12]–[14].The main reason for 
using ML decoding is that it is very simple to 
implement and thus it is very practical and has low 
complexity. The drawback of ML decoding is that, for 
a coded word of -bits, it takes cycles in the decoding 
process, posing a big impact on system performance 
[6].One way of coping with this problem is to 
implement parallel encoders and decoders. This 
solution would enormously increase the complexity 
and, therefore, the power consumption. 
 
 As most of the memory reading accesses will 
have no errors, the decoder is most of the time working 
for no reason. This has motivated the use of a fault 
detector module [11] that checks if the codeword 
contains an error and then triggers the correction 
mechanism accordingly. In this case, only the faulty 
code words need correction, and therefore the average 
read memory access is speeded up, at the expense of an 
increase in hardware cost and power consumption. A 
similar proposal has been presented in [15] for the case 
of flash memories. The simplest way to implement a 
fault detector for an ECC is by calculating the 
syndrome, but this generally implies adding another 
very complex functional unit. 
 
 This paper explores the idea of using the ML 
decoder circuitry as a fault detector so that read 
operations are accelerated with almost no additional 
hardware cost. The results show that the properties of 
DSCC-LDPC enable efficient fault detection. The 
remainder of this paper is organized as follows. Section 
II gives an overview of existing ML decoding 

solutions; Section III presents the novel ML 
detector/decoder 
 

 
 
 

Figure. 1. Memory system schematic with MLD. 
 
(MLDD) using difference-set cyclic codes; Section IV 
discusses the results obtained for the different versions 
in respect to effectiveness, performance, and area and 
power consumption. Finally, Section V discusses 
conclusions and gives an outlook onto future work. 
 
2. EXISTENT MAJORITY LOGIC 
DECODING (MLD) SOLUTIONS 
 MLD is based on a number of parity check 
equations which are orthogonal to each other, so that, 
at each iteration, each code word bit only participates 
in one parity check equation, except the very first bit 
which contributes to all equations. For this reason, the 
majority result of these parity check equations decide 
the correctness of the current bit under decoding. 
 
 MLD was first mentioned in [7] for the Reed–
Müller codes. Then, it was extended and generalized in 
[8] for all types of systematic linear block codes that 
can be totally orthogonalized on each code word bit .A 
generic schematic of a memory system is depicted in 
Fig. 1 for the usage of an ML decoder. Initially, the 
data words are encoded and then stored in the memory. 
When the memory is read, the codeword is then fed 
through the ML decoder before sent to the output for 
further processing. In this decoding process, the data 
word is corrected from all bit-flips that it might have 
suffered while being stored in the memory. There are 
two ways for implementing this type of decoder. The 
first one is called the Type-IML decoder, which 
determines, upon XOR combinations of the syndrome, 
which bits need to be corrected [6]. The second one is 
the Type-II ML decoder that calculates directly out of 
the codeword bits the information of correctness of the 
current bit under decoding [6]. Both are quite similar 
but when it comes to implementation, the Type-II uses 
less area, as it does not calculate the syndrome as an 
intermediate step. Therefore, this paper focuses only on 
this one. 
 
A. Plain ML Decoder 
 As described before, the ML decoder is a 
simple and powerful decoder, capable of correcting 
multiple random bit-flips depending on the number of 
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parity check equations. It consists of four parts: 1) a 
cyclic shift register; 2) an XOR matrix; 3) a majority 
gate; and 4) an XOR for correcting the codeword bit 
under decoding results of the checksum equations from 
the XOR matrix. In the cycle, the result has reached the 
final tap, producing the output signal (which is the 
decoded version of input).As stated before, input might 
correspond to wrong data corrupted by a soft error. To 
handle this situation, the decoder would behave as 
follows. After the initial step, in which the code word 
is loaded, as illustrated in Fig. 2.The input signal is 
initially stored into the cyclic shift register rand shifted 
through all the taps. The intermediate values in each 
tap are then used to calculate the into the cyclic shift 
register, the decoding starts by calculating the parity 
check equations hardwired in the XOR matrix. The 
resulting sums are then forwarded to the majority gate 
for evaluating its correctness. If the number of 1’s 
received in is greater than the number of 0’s,that would 
mean that the current bit under decoding is wrong, and 
a signal to correct it would be triggered. Otherwise, the 
bit under decoding would be correct and no extra 
operations would be needed on it. In the next step, the 
content of the registers are rotated and the above 
procedure is repeated until all codeword bits have been 
processed. Finally, the parity check sums should be 
zero if the code word has been correctly decoded. 
Further details on how this algorithm works can be 
found in [6]. The whole algorithm is depicted in Fig. 3. 
The previous algorithm needs as many cycles as the 
number of bits in the input signal, which is also the 
number of taps, in the decoder. This is a big impact on 
the performance of the system, depending on the size 
of the code. For example, for a code word of 73 bits, 
the decoding would take 73 cycles, which would be 
excessive for most applications. 
 
B. Plain MLD With Syndrome Fault Detector (SFD) 
 In order to improve the decoder performance, 
alternative designs may be used. One possibility is to 
add a fault detector by calculating the syndrome, so 
that only faulty code words are decoded [11]. Since 
most of the code words will be error-free, no further 
correction will be needed, and therefore performance 
will not be affected. Although the implementation of an 
SFD reduces the average latency of the decoding 
process, it also adds complexity to the design (see Fig. 
4).The SFD is an XOR matrix that calculates the 
syndrome based on the parity check matrix. Each parity 
bit results in a syndrome equation. Therefore, the 
complexity of the syndrome calculator increases with 
the size of the code. A faulty code word is detected 
when at least one of the syndrome bits is “1.” This 
triggers the MLD to start the decoding, as explained 
before. On the other hand, if the codeword is error-free, 
it is forwarded directly to the output, thus saving the 

correction cycles In this way, the performance is 
improved in exchange of an additional module in the 
memory system: a matrix of XOR gates to resolve the 
parity check matrix, where each check bit results into a 
syndrome equation. This finally results in a quite 
complex module, with a large amount of additional 
hardware and power consumption in the system. 
 
3.PROPOSED ML DETECTOR/DECODER 
 This section presents a modified version of the 
ML decoder that improves the designs presented 
before. Starting from the original design of the ML 
decoder introduced in [8], the proposed ML 
detector/decoder (MLDD) has been implemented using 
the difference-set cyclic codes (DSCCs) [16]–[19]. 
This code is part of the LDPC codes, and, based on 
their attributes, they have the following properties  
ability to correct large number of errors 
 

 
 
Figure. 2.Schematic of an ML decoder.I) cyclic shift 

register. II) XOR matrix. III) Majority gate. IV) 
XOR for correction. 

 



Fault Secure Memory Design Using Difference-Set Codes for Memory Applications 
 

38 | P a g e  

 
 

Figure. 3.Flowchart of the ML algorithm. 
 

 
 

Figure. 4.Memory system schematic of an ML 
decoder with SFD. 

• sparse encoding, decoding and checking circuits 
synthesizable into simple hardware; 
• modular encoder and decoder blocks that allow an 
efficient hardware implementation; 
• systematic code structure for clean partition of 
information and code bits in the memory. 
 
 

 
 

Figure. 5.Single check equation of a � _ __ ML 
decoder. (a) One bit-flip. (b) Two bit-flips. (c) Three 

bit-flips. 

 
 An important thing about the DSCC is that its 
systematical distribution allows the ML decoder to 
perform error detection in a simple way, using parity 
check sums (see [6] for more details).However, when 
multiple errors accumulate in a single word, this 
mechanism may misbehave, as explained in the 
following. In the simplest error situation, when there is 
a bit-flip in a code word, the corresponding parity 
check sum will be “1,” as shown in Fig. 5(a). This 
figure shows a bit-flip affecting bit 42 of a codeword 
with length and the related check sum that produces a 
“1.” However, in the case of Fig. 5(b), the code word is 
affected by two bit-flips in bit 42 and bit 25, which 
participate in the same parity check equation. So, the 
check sum is zero as the parity does not change. 
Finally, in Fig. 5(c), there are three bit-flips which 
again are detected by the check sum (with a “1”).As a 
conclusion of these examples, any number of odd bit 
flip scan be directly detected, producing a “1” in the 
corresponding .The problem is in those cases with an 
even numbers of bit-flips, where the parity check 
equation would not detect the error. In this situation, 
the use of a simple error detector based on parity check 
sums does not seem feasible, since it cannot handle 
“false negatives” (wrong data that is not detected). 
However, the alternative would be to derive all data to 
the decoding process(i.e., to decode every single word 
that is read in order to check its correctness), as 
explained in previous sections, with a large 
performance overhead .Since performance is important 
for most applications, we have chosen an intermediate 
solution, which provides a good reliability with a small 
delay penalty for scenarios where up to five bit-flips 
may be expected (the impact of situations with more 
than five bit-flips will be analyzed in Section IV-A). 
This proposal is one of the main contributions of this 
paper, and it is based on the following hypothesis: 
Given a word read from a memory protected with 
DSCC codes, and affected by up to five bit-flips, all 
errors can be detected in only three decoding cycles. 
This is a huge improvement over the simpler case, 
where decoding cycles are needed to guarantee that 
errors are detected. The proof of this hypothesis is very 
complex from the mathematical point of view. 
Therefore, two alternatives have been used in order to 
prove it, which are given here. 
 
• Through simulation, in which exhaustive experiments 
have been conducted, to effectively verify that the 
hypothesis applies (see Section IV). 
• Through a simplified mathematical proof for the 
particular case of two bit-flips affecting a single word  
For simplicity, and since it is convenient to first 
describe the chosen design, let us assume that the 
hypothesis is true and that only three cycles are needed 
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to detect all errors affecting up to five bits (this will be 
confirmed in Section IV).In general, the decoding 
algorithm is still the same as the one in the plain ML 
decoder version.  
 
 The difference is that, instead of decoding all 
codeword bits by processing the ML decoding during 
cycles, the proposed method stops intermediately in the 
third cycle, as illustrated in Fig. 6. If in the first three 
cycles of the decoding process, the evaluation of the 
XOR matrix for all is “0,” the code word is determined 
to be error-free and forwarded directly to the output. If 
the contain in any of the three cycles at least a “1,” the 
proposed method would continue the whole decoding 
process in order to eliminate the errors. A detailed 
schematic of the proposed design is shown in Fig. 7. 
The figure shows the basic ML decoder with an -tap 
shift register, an XOR array to calculate the orthogonal 
parity check sums and a majority gate for deciding if 
the current bit under decoding needs to be inverted. 
Those components are the same as the ones for the 
plain ML decoder shown in Fig. 2. The additional 
hardware to perform the error detection is illustrated in 
Fig. 7 as i) the control unit which triggers a finish flag 
when no errors are detected after the third cycle and ii) 
the output. 
 

 
 
Figure. 6.Flow diagram of the MLDD algorithm. 
 
 Tristate buffers. The output tri state buffers 
are always in high impedance unless the control unit 
sends the finish signal so that the current values of the 

shift register are forwarded to the output. The control 
schematic is illustrated in Fig. 8. The control unit 
manages the detection process. It uses a counter that 
counts up to three, which distinguishes the first three 
iterations of the ML decoding. In these first three 
iterations, the control unit evaluates the by combining 
them with the OR1 function. This value is fed into a 
three-stage shift register, which holds the results of the 
last three cycles. In the third cycle, the OR2 gate 
evaluates the content of the detection register. When 
the result is “0,” the FSM sends out the finish signal 
indicating that the processed word is error free. In the 
other case, if the result is “1,” the ML decoding process 
runs until the end. 
 
 This clearly provides a performance 
improvement respect to the traditional method. Most of 
the words would only take three cycles (five, if we 
consider the other two for input/output) and only those 
with errors (which should be a minority) would need to 
perform the whole decoding process. More information 
about performance details will be provided in the next 
sections. The schematic for this memory system is very 
similar to the one in Fig. 1, adding the control logic in 
the MLDD module. 
 

 
 

Figure. 7.Schematic of the proposed MLDD.i) 
Control unit. ii) Output tristate buffers. 
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Figure. 8.Memory system schematic of an MLDD. 

 
4.CORRECTOR 
 One-step majority logic correction is the 
procedure that identifies the correct value of an each bit 
in the codeword directly from the received codeword 
the majority value indicates the correctness of the 
code-bit under consideration; if the majority value is 1, 
the   bit is inverted, otherwise it is kept unchanged. 
 
 
 
 

 
 
 

Figure 9 Majority Logic Corrector for 15-Bit 
Codeword’s 

 A compact implementation for the majority 
gate is by using Sorting Networks. The binary Sorting 
Networks is used to do the sort operation of the second 
step efficiently. An -input sorting network is the 
structure that sorts a set of bits, using 2-bit sorter 
building blocks. Fig. 6.5 (a) Shows a 4-input sorting 
network. Each of the vertical lines represents one 
comparator which compares two bits and assigns the 
larger one to the top output and the smaller one to the 
bottom see Fig. 6.5 (b) the four-input sorting network, 
has five comparator blocks, where each block consists 

of two two-input gates; overall the four-input sorting 
network consists of ten two-input gates in total. 
 
5. SORTING NETWORK  
 Sorting network is used to sort the two or 
more inputs. By using the sorting network accessing 
time is reduced by sorting the inputs. From the below 
diagram each vertical line indicates a comparator, 
which compares the two bits and assigns the larger one 
to the top output and smaller one to the bottom. From 
that we conclude that without using the sorting network 
the XOR matrix output is directly applied to the 
majority gate so the accessing time is large to obtain 
the output. In our proposed we use sorting network in 
the modified control unit it separate the maximum level 
output and minimum level output So the accessing time 
is reduced. 
 
 

 
 
Figure 10 (a) Four-Input Sorting Network Each (b) 

One Comparator Structure 
(c) Eight-Input Majority Gate Using Sorting 

Network 
 
 

7 
 

7 
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6.RESULTS 
 
A. Memory 
 The memory read access delay of the plain 
MLD is directly dependent on the code size. i.e., a code 
with length 72 needs 72 cycles. Then two extra cycles 
need to be added for I/O. On the other hand, the 
memory read access delay of the proposed Modified 
MLDD is only dependent on the word error 
rate(WER).there are more errors, then more words 
need to be fully decoded. 
 

 
 

Figure 11 Error Detection by Plain MLD Method 
 
B. Area 
 In the proposed MLDD there is an extra 
circuitry of control logic which consists of shift register 
and or gates. The given below table shows the 
comparison of total estimated power consumption. 
 
 

Technique 
 

Total Equivalent gate 
count requirement 

Existent MLD                    3197 
MLDD                    3322 
Modified MLDD                     2229 
 
 Therefore there will be a slight area overhead 
when compared to existing MLD because of this 
detection logic. But this is overcome by modified 
MLDD using sorting network. 
 
7. CONCLUSION  
 In this paper, the detection of errors during 
first iterations of serial one step Majority Logic 
Decoding of DSCCs-LDPC codes has been presented. 
The simulation results show that the one step MLD 
would takes 15 cycles to decode a code word of 15-
bits, which would be excessive for most applications. 
The MLD design requires small area but requires large 
decoding time and can be able to detect two or few 
errors.Hence,memory access time increases another 

method, called MLDD can detect upto five bit-flips and 
consumes the area of majority gate. 
 
 The proposed modified MLDD have the 
capability to detect the presence of errors in just 3 
cycles even for multiple bit flips.It has found that for 
error detection and correction (for code word of 15), 
when comparing to the existing technique, a speed up 
of about 1100 ns is obtained when there is no errors in 
the data read access. This is a great saving of time 
since most of the situations the memory read access 
does not make errors. Therefore there is a considerable 
reduction in the memory access time.The proposed 
MLDD have the capability of detecting more than five 
bit flips and also reduces the area of majority gate by 
the use of sorting network. 
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